
Let’s Fix the Broken Pieces
You Want Better Software

Kevin E. Greene
OpenText Cybersecurity, Public Sector CTO

2© 2023 Open Text

Agenda

• Introductions
• Reflections
• Major Software Security Initiatives
• The Broken Pieces
• If I was still a Fed…
• OpenText Software Security

3© 2023 Open Text

Introductions
Kevin E. Greene

• Software Assurance Marketplace (SWAMP)
• Common Architectural Weakness Enumeration (CAWE)
• Hybrid Analysis Mapping (HAM)
• Static Tool Analysis Modernization Project (STAMP)
• RevealDroid – Mobile Application Security
• General Analysis Toolkit Using Record and Replay (GATOR) -

REnigma
• DevSecOps Tiger Team
• CTID Research - ATT&CK Research
• CWE Program Support
• Threat Informed Defense – Zero Trust
• Zero Trust Lab

Key Highlights

4© 2023 Open Text

Reflections

5© 2023 Open Text

Major Software Security Initiatives

Software Bill of Materials (SBOMs)

Software Attestation

Software Liability

6© 2023 Open Text

The Broken Pieces

“If tech debt was real debt, Dave Ramsey would yell at us all day long.”

Too Much Technical Debt
There is insurmountable technical debt that has
not been paid down that accelerates
vulnerabilities in software. Poor designs that do
not enforce good design patterns are prone to be
high maintenance.

Brian Knapp

Source: https://www.iteratorshq.com/blog/what-is-technical-debt-in-software-development-
and-how-to-manage-it/

CAWE CWE CVE

7© 2023 Open Text

The Broken Pieces

Secure Software is Not Realistic
Secure software is not attainable nor realistic in modern
software development - all the industry best practices imply
(whether implicitly or explicitly) the notion or idea that these
set of best practices will produce “secure software”. That is a
flawed premise and sets unrealistic expectations. NIST SSDF
points to various sources and list activities, but the context
implies secure software — assured software may be more
realistic in framing the outcomes for software development
activities.

All software have vulnerabilities. Building something securely, doesn’t guarantee
”secure software”.

Source: Study.com

8© 2023 Open Text

The Broken Pieces

Residual Risk in AST Tools
We cannot consistently measure the performance of AST tools,
scientifically we do not know what tools are good at (sweet spot), and
conversely where these tools struggle. There needs to be some ground
truth, and confidence in what tools can and cannot find. Otherwise, we
are missing key issues that result in poor tool coverage and give a false
sense of assurance and security that will make software attestation and
software liability difficult to formalize.

Understanding the false-negative, false-positive, and true-positive rates in tools is crucial
to managing risk in software.

9© 2023 Open Text

The Broken Pieces

SDL and SDLC Do Not Work

Prove to me otherwise with data and scientific proof that is reliable to
draw from. This is my assertion given the growing rate of bad software
prone to attacks. Identifying the activities and tasks that are known to
produce better quality and security in software will streamline and
improve how we develop and build software. Prioritizing and
integrating these activities and tasks in DevOps and DevSecOps
practices will give software vendors the confidence in making the
appropriate investment decisions to formalize software security as a
standard practice.

Source: scrum.org

Find those tasks and activities and do them religiously!!

10© 2023 Open Text

If I Was Still a Fed
Research questions that are fascinating and interesting

• How close can we get in predicting attack and defect proneness rates in software?’

• Can LLM be used for automated and iterative threat modeling to reason about design decisions and the ability
to enforce robust security protection?

• How do you incentivize OSS developers to design/develop better quality and security in software?

• What properties in software are directly related to quality and security?

• Is self healing or automated patching possible in modern software development?

• What percentage of weaknesses (CWEs) in OSS will result in CVEs?

11© 2023 Open Text

OpenText Software Security

12© 2023 Open Text

OpenText Software Security

13© 2023 Open Text

Thank you for your time

Email – kgreene@opentext.com

@iamkevtorious

https://www.linkedin.com/in/kevgreene/

#dontbugmetodeath

	Slide Number 1
	Agenda
	Introductions
	Reflections
	Major Software Security Initiatives
	The Broken Pieces
	The Broken Pieces
	The Broken Pieces
	The Broken Pieces
	If I Was Still a Fed
	OpenText Software Security
	OpenText Software Security
	Slide Number 13
	Slide Number 14

