opentext’

You Want Better Software

Let’s Fix the Broken Pieces

Kevin E. Greene
OpenText Cybersecurity, Public Sector CTO

Agenda

* Introductions

* Reflections

 Major Software Security Initiatives
* The Broken Pieces

* If Il was still a Fed...

 OpenText Software Security

OpenteXt © 2023 Open Text

Introductions

Science and
Technology

opentext’

opentext’

Kevin E. Greene
Key Highlights

Software Assurance Marketplace (SWAMP)

Common Architectural Weakness Enumeration (CAWE)
Hybrid Analysis Mapping (HAM)

Static Tool Analysis Modernization Project (STAMP)
RevealDroid — Mobile Application Security

General Analysis Toolkit Using Record and Replay (GATOR) -
REnigma

DevSecOps Tiger Team

CTID Research - ATT&CK Research
CWE Program Support

Threat Informed Defense — Zero Trust
Zero Trust Lab

© 2023 Open Text

Reflections

Don't Be Blindsided by Software Bills of
Materials

It's imperative we collaborate and partner to improve software security. This may require

developing tools and standards that can enrich SBOMs and provide deeper analysis.

Kevin E. Greene
Public Sector CTO, CyberRes, a Micro Focus line of business January 06, 2023

OpenteXt © 2023 Open Text

Major Software Security Initiatives

SBOM Facts

At its most simplistic level, an SBOM is a list of
“ingredients” that describes the components
in a software application.

Elements

% Daily Value*

Supplier The name of an entity that creates, defines,
Name and idenilfles components. ”
Component Designation assigned to a unit of
Name software defined by the criginal supplier,
Version of Identifier used by the supplier to specify
a change in software from a previousty
the Component identified version, L
Other Unique Other identifiers that are used to identify a
I compenent, or serve as a look-up key for
Identifiers relevant databases,
%
Dependency Characterizing the relationship that an . ore
Relationshi upstream component® is included in software ¥ S f b I
P " oftware Liability
Author of The name of the entity that craates the
SBOM Data SBOM data for this component.

Software Attestation

s
- Record of the data and fime of the SBOM data
Timestamp assembly.

Software Bill of Materials (SBOMs)

Openl'eXt © 2023 Open Text 5

The Broken Pleces

RECKLESS E PRUDENT
. w - :
Too Much Technical Debt = : :
14 “We don’t have * “We must ship now !
o . g time for design!” E and deal mthn E
There is insurmountable technical debt that has = : consequences.” .
not been paid down that accelerates H : :
vulnerabilities in software. Poor designs that do : .
not enforce good design patterns are prone to be - : :
high maintenance. Z C -
E + “Now we know |
T “What's layering?” ! how we should @
E + have doneit” .
CAWE . CWE _, CVE > : :

Source: https://www.iteratorshq.com/blog/what-is-technical-debt-in-software-development-
and-how-to-manage-it/

“If tech debt was real debt, Dave Ramsey would yell at us all day long.”
Brian Knapp

Openl'eXt © 2023 Open Text

The Broken Pileces

Secure Software is Not Realistic

Secure software is not attainable nor realistic in modern
software development - all the industry best practices imply
(whether implicitly or explicitly) the notion or idea that these
set of best practices will produce “secure software”. That is a
flawed premise and sets unrealistic expectations. NIST SSDF
points to various sources and list activities, but the context
implies secure software — assured software may be more
realistic in framing the outcomes for software development
activities.

software developed or
engineered in such a way that its
operations and functionalities
continue as normal even when
subjected to malicious attacks

Source: Study.com

All software have vulnerabilities. Building something securely, doesn’t guarantee

”secure software”.

opentext’

© 2023 Open Text 7

The Broken Pleces

Residual Risk in AST Tools

DEEP LEARNING

We cannot consistently measure the performance of AST tools,
scientifically we do not know what tools are good at (sweet spot), and
conversely where these tools struggle. There needs to be some ground
truth, and confidence in what tools can and cannot find. Otherwise, we
are missing key issues that result in poor tool coverage and give a false
sense of assurance and security that will make software attestation and
software liability difficult to formalize.

Understanding the false-negative, false-positive, and true-positive rates in tools is crucial
to managing risk in software.

OpenteXt © 2023 Open Text 8

The Broken Pileces

SDL and SDLC Do Not Work

Prove to me otherwise with data and scientific proof that is reliable to
draw from. This is my assertion given the growing rate of bad software
prone to attacks. Identifying the activities and tasks that are known to
produce better quality and security in software will streamline and
improve how we develop and build software. Prioritizing and
integrating these activities and tasks in DevOps and DevSecOps
practices will give software vendors the confidence in making the
appropriate investment decisions to formalize software security as a
standard practice.

Source: scrum.org

Find those tasks and activities and do them religiously!!

Openl'eXt © 2023 Open Text 9

If | Was Still a Fed

Research questions that are fascinating and interesting

* How close can we get in predicting attack and defect proneness rates in software?’

 Can LLM be used for automated and iterative threat modeling to reason about design decisions and the ability
to enforce robust security protection?

* How do you incentivize OSS developers to design/develop better quality and security in software?
 What properties in software are directly related to quality and security?
* |s self healing or automated patching possible in modern software development?

* What percentage of weaknesses (CWEs) in OSS will result in CVEs?

OpenteXt © 2023 Open Text 10

OpenText Software Security

Fortify Portfolio

Automate testing throughout the CI/CD pipeline, enable developers to quickly resolve issues

= Static Code Analyzer (SAST): Analyzes source code for security vulnerabilities

= Weblnspect: Dynamic testing (DAST) analyzes applications in their running state

and simulates attacks against an application to find vulnerabilities. Includes IAST -
agent
* Debricked (SCA): Developer-centric open source intelligence aimed at innovating -

how organizations secure their software supply chain

o

= Sonatype (SCA): Scans open source components for vulnerabilities F r If

= Software Security Center: Holistic application security platform included with on-
premises solutions to get complete visibility of application security risks

* Fortify on Demand (FoD): AppSec as a Service, that includes SAST, DAST, and SCA @ FedRAMP

* Fortify Hosted: SaaS Based offering of Fortify Portfolio to outsource
infrastructure/deployment of customer’s Fortify platform in their Saas
environment with customers driving their scans

Solutions that Align With DevSecOps Success Eﬂ’g Integration %" Automation EE/) Speed

Backed by the Market Leading Software Security Research Team
1,137 Vulnerability Categories | 30 Programming Languages | 1M+ Individual APls

opentext’

© 2023 Open Text

11

OpenText Software Security

Gartner
peerinsights

customers

Fortify leadership in the AppSec market

IDC MarketScape Worldwide Enterprise Automated Software Quality and
Continuous Testing for Digital Execution Vendor Assessment
])) PeerSpot
IDC MarketScape: W &.rlr.l;::;jrsr::?:;::‘g;;d\ ontinuous Testing for No.l
Synopsys ; i - Rirxjsd
1BM
L
|~ Vhcro Foous
N
- R Serieon
Qo] ! Perorce e -
(%] ' Parssch o
Gitlab ® Vs & ity
Checkmarx 2 oiaar (B Mo
=} GitLan y
. 0 " El i Symopsys Keysight
HCLSoftware @ pel 8 D e " —— S Lot
Snyk et gt R
] Contrast S
GitHub ! R
\ fa—
Onapsis THE FORRESTER WAVE™ £ 2
. Sonatype .Cmtrﬁl Security Static Application Security Testing AT
a1 2001 :
.ME":' o Challengers Contenders pmf;?."ri Leaders
reatuRg sugronm @
" " Leader
o
3 | SUMMER
o
5
& e O e 2022
et Rl e
S
1~
5 [0 M
<
COMPLETENESS OF VISION As of April 2023 © G I G n OM

Weaker strategy B Strongsr stiategy

Markst presence

OpenteXt © 2023 Open Text

Thank you for your time

Email — kgreene@opentext.com

D @iamkevtorious

https://www.linkedin.com/in/kevgreene/

#dontbugmetodeath

OpenteXt © 2023 Open Text 13

opentext"

	Slide Number 1
	Agenda
	Introductions
	Reflections
	Major Software Security Initiatives
	The Broken Pieces
	The Broken Pieces
	The Broken Pieces
	The Broken Pieces
	If I Was Still a Fed
	OpenText Software Security
	OpenText Software Security
	Slide Number 13
	Slide Number 14

