# Bridging the Gap: IPv6 Security Through Staff Education and Technical Advancement

Joe Klein
Cybernode Innovations

Cybersecurity Fellow, IPv6 Forum
Cybersecurity Fellow, IPv6 Enhanced Council
Sr. Fellow, ISSA
IPv6Sec@gmail.com 703-594-1419

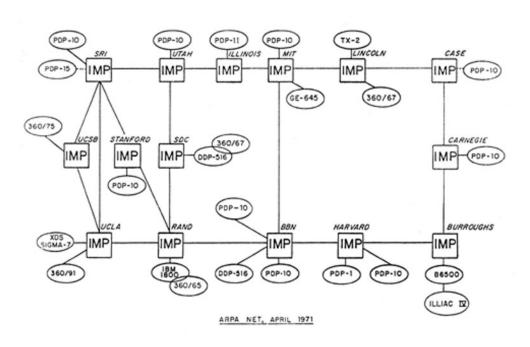
# Agenda

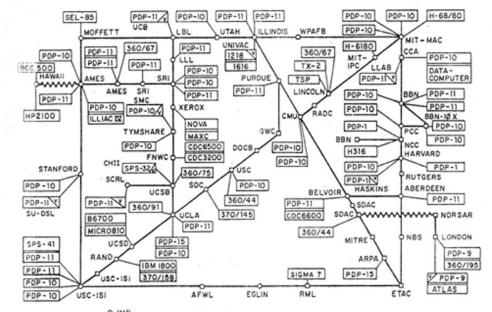
- History of the Internet From NCP to IPv6
- IPv6 Scope of Technologies
- What is IPv6?
- What is the Security History of IPv6?
- Where are all the IPv6 Trained people?

# History of the ARPA & Internet

## Internet Protocol Timelines - Cradle to Grave

Network Control Protocol (NCP) – 2<sup>8</sup> Addresses (256 Systems)


Goal: Connect two or more systems; Develop software to simplify communications


25Y Flag Day Recognized change \$ Operational Research Standard Established 1975 1960 - 1966 1967 - 1971 January 1983 - 1985 1971

NCP: US Patents: 6 RFC's: 12

10 Years 400 Nodes

ARPA NETWORK, LOGICAL MAP, JANUARY 1975





O TIP

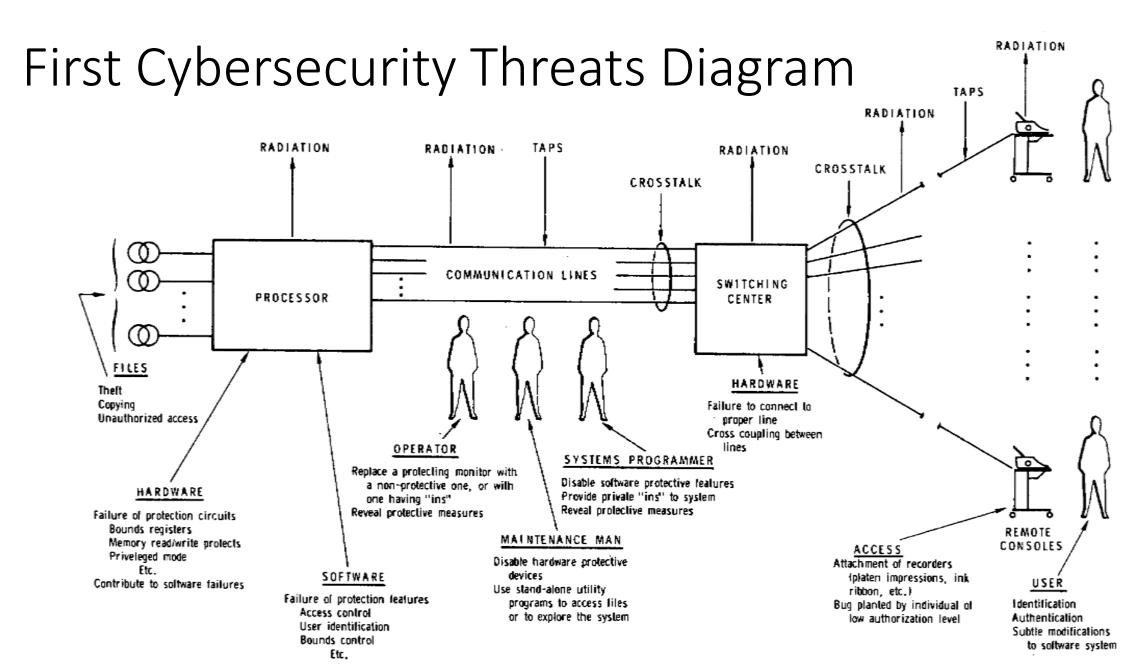
# Security & Privacy Source Document?

- "A spectrum of problems which ultimately must be assessed as an engineering Trade-off question"
- PRIVACY
  - "The **value** of private information **to outsider** determining the **resources** he is will to **expend for acquisition**"
- SECURITY
  - "The value of the information to its owner determining what he is willing to pay for protection"
- "All-important difference is that the users of the computer-private network may not be subject to a common authority and discipline, or that these forces may be inadequate to deter deliberate attempts at penetration"
- Defines the problems of Cyber Espionage against government and corporations.
- "Industrial Security" to protect business information

#### SECURITY AND PRIVACY IN COMPUTER SYSTEMS

Willis H. Ware

The RAND Corporation, Santa Monica, California


#### ABSTRACT

This Paper consists of two distinct but related parts. An introductory section reviews and standardizes the terminology to be used throughout, and outlines the configuration of a typical remote-access, multi-user resource-sharing computer system, identifying its vulner-abilities to the accidental or deliberate divulgence of information. The main portion of the Paper then compares the security and privacy situations, suggesting design considerations for protecting private information handled by computer systems.

The privacy problem is really a spectrum of problems which ultimately must be assessed as an engineering

#### **April 1967**

Reference: https://www.rand.org/pubs/authors/w/ware\_willis\_h.html



Willis H. Ware, RAND Corporation, April 1967, Reference: https://www.rand.org/pubs/authors/w/ware\_willis\_h.html

# Privacy Source Document?

- \* "Suggested that one-time passwords are necessary to satisfactorily identify and authenticate the users"
  - \* "University... permanently assigned password are considered acceptable for users identification"
- \* "Divulgence of sensitive information can be some extent damage other parties or organizations... it is conceivable that liability for unauthorized leaking of sensitive information may become as severe as for divulging classified material."
- \* "Need-to-know restrictions and in conformance with corresponding attributes in the privacy situation."
- \* "One cannot exploit the good will of users as part of a privacy system's design"

#### SYSTEM IMPLICATIONS OF INFORMATION PRIVACY

H. E. Petersen\* R. Turn\*

The RAND Corporation, Santa Monica, California

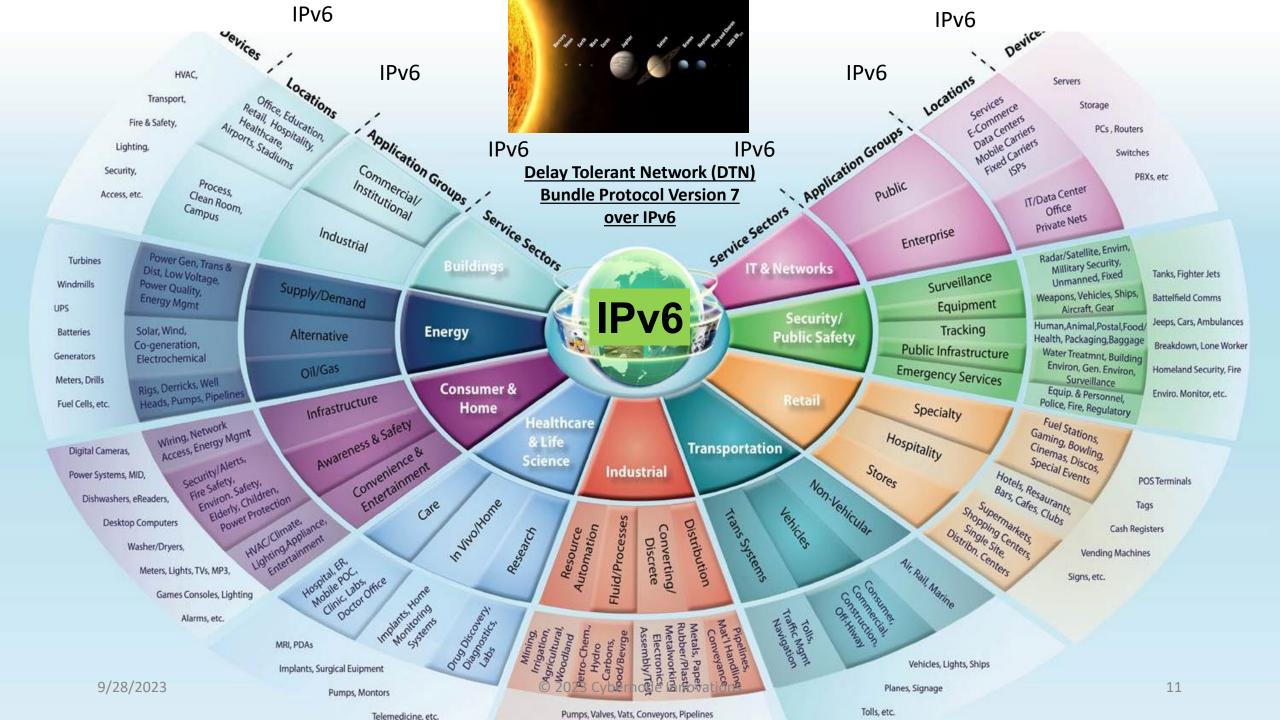
#### ABSTRACT

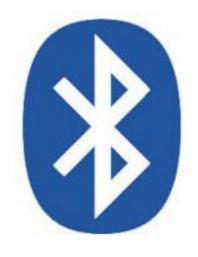
Various questions of providing information privacy for remotely accessible on-line, time-shared information systems are explored. Such systems, especially the remote terminals and the communication network, are vulnerable to threats to privacy ranging from accidental dumping of information as a result of hardware or software failures to deliberate penetration using sophisticated equipment. Deliberate attacks are to be expected since payoff from obtained, altered, or erased information could be high. The resources required vary from the cost of a tape recorder to a large investment in equipment and knowhow.

A range of protective countermeasures is discussed, and their choice and implication considered. It appears possible to counter a given level of threat without unreasonable expenditures of resources. The protective techniques discussed

#### **April 1967**

Reference: https://www.rand.org/content/dam/rand/pubs/papers/2005/P3504.pdf


## Internet Protocol Timelines - Cradle to Grave




### Internet Protocol Timelines - Cradle to Grave

Network Control Protocol (NCP) – 2<sup>8</sup> Addresses Goal: Connect two or more systems; Develop software to simplify communications 25Y Flag Day Recognized change Research Operational Standard Established 1975 1960 - 1966 1967 - 1971 January 1983 - 1985 1975 NCP: US Patents: 6 RFC's: 12 10 Years = 400 Nodes Internet Protocol Version 4 (IPv4) – 2<sup>32</sup> Addresses Goals Changed: Extend IPv4 until IPv6 is Ready Goal: Wired and Wireless Server to Server Communications 60Y Operational Extend Life Research Recognized change Standard Flag Day 2030 1970 Established 1978 1970-1973 1985 1991 - 2014 IPv4: US Patents: 559,786 RFC's: 2,483 +3.8 Billion IP's 34 Years ~1 Trillin Devices Internet Protocol Version 6 (IPv6) – 2^128 Addressing Goal: Anything to Anything Communications, over any type of network ~110Y Research **RFC 8200 RFC 2460** Flag Day Recognized change **RFC 1883** Operational STD 86 1991 1996 1998 ~2060-2100 2017 1993-2006 IPv6: US Patents: 72,145 RFC's: 579 360 Trillion-Trillion-22 Years Trillion Addresses

# IPv6 Scope of Technologies





# Bluetooth®











# IPv6 – Wired & Wireless Technologies

**6LowPAN** - 2009 - Basis of Smart Cities, Buildings, Government, etc.

#### IEEE 802.15.4, ITU-T G.9903,

- Urban RFC 5548
- Industrial Routing RFC 5673
- Home Automation Routing RFC 5826
- Building Automation Routing RFC 5867

#### Bluetooth 4.2 and beyond - 2014

- Low-power Wireless Personal Area Network (6LoWPAN) RFC 7668
- IPv6 Mesh over BLUETOOTH(R) Low Energy using IPSP
- IETF draft-ietf-6lo-blemesh-02

#### 4G/LTE - 2013

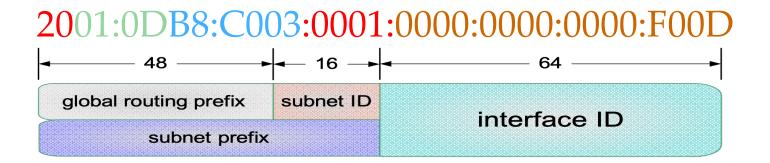
- 464XLAT IETF RFC 6877
- NAT64/DNS64 IETF RFC 6052, RFC 6146

**5G – 2017** - IETF - Segment Routing IPv6 (SRv6) - draft-ietf-6man-segment-routing-header-21

**LoRa – 2012** - IoT - Energy management, natural resource reduction, pollution control, infrastructure efficiency, disaster prevention

**Automobiles** - Self-driving car in traffic - convoyed (platooned) – 2019 - IETF - IPv6 over 80211-OCB

12


9/28/2023 © 2023 Cybernode Innovations

# What and Why of IPv6?

Why Should You Care?

## IPv6 Addressing – Has Context

All IPv6 Addresses are 128 bits or 32 Hex Characters



First 64 bits concern routing - 9,223,372,036,854,775,807 Networks
Last 64 bits concern local segment devices - 9,223,372,036,854,775,807
Routers, Servers, VM's, Containers, per network

Simplifies
Host, VM,
Container
Configurations

| Address<br>Autoconfiguration<br>Method | ICMPv6<br>RA (Type 134)<br>Flags<br>M Flag O Flag |     | ICMPv6<br>RA (Type 134)<br>ICMPv6 Option<br>Prefix Info<br>A Flag L Flag |     | Prefix<br>Derived<br>from | Interface ID<br>Derived from            | Other<br>Configuration<br>Options | # of<br>IPv6<br>Addr                        |
|----------------------------------------|---------------------------------------------------|-----|--------------------------------------------------------------------------|-----|---------------------------|-----------------------------------------|-----------------------------------|---------------------------------------------|
| Link-Local<br>(always configured)      | N/A                                               | N/A | N/A                                                                      | N/A | Internal<br>(fe80::)      | M-EUI-64<br>or Privacy                  | Manual                            | 1                                           |
| Manual                                 | Off                                               | Off | Off                                                                      | On  | Manual                    | Manual                                  | Manual                            | 2<br>(LL,<br>Manual)                        |
| SLAAC                                  | Off                                               | Off | On                                                                       | On  | RA                        | M-EUI-64<br>or Privacy                  | Manual                            | 3<br>(LL, IPv6,<br>IPv6<br>temp)            |
| Stateful<br>(DHCPv6)                   | On                                                | N/R | Off                                                                      | On  | DHCPv6                    | DHCPv6                                  | DHCPv6                            | 2<br>(LL,<br>DHCPv6)                        |
| Stateless<br>DHCPv6                    | Off                                               | On  | On                                                                       | On  | RA                        | M-EUI-64<br>or Privacy                  | DHCPv6                            | 3<br>(LL, IPv6,<br>IPv6<br>temp)            |
| Combination<br>Stateless &<br>DHCPv6   | On                                                | N/R | On                                                                       | On  | RA<br>and<br>DHCPv6       | M-EUI-64<br>or Privacy<br>and<br>DHCPv6 | DHCPv6                            | 4<br>(LL, IPv6,<br>IPv6<br>temp,<br>DHCPv6) |

© 2023 Cybernode Innovations 9/28/2023 15

# **Technical & Business Case – Scalability**

#### **IPv6 Technical**

- Home/Small Business:
  - /64 (1 network) or /56 (256 networks)
  - Devices, Virtualizations, and Containers on each LAN Segment 18,446,744,073,709,551,616
- Government/Enterprise:
  - /48 (65,536 LAN Segments)
  - /32 (65,536 /48 locations)
  - Devices, Virtualizations, and Containers on each LAN Segment 18,446,744,073,709,551,616

#### **Abundance**

#### **IPv6 OPEX Cost Estimate**

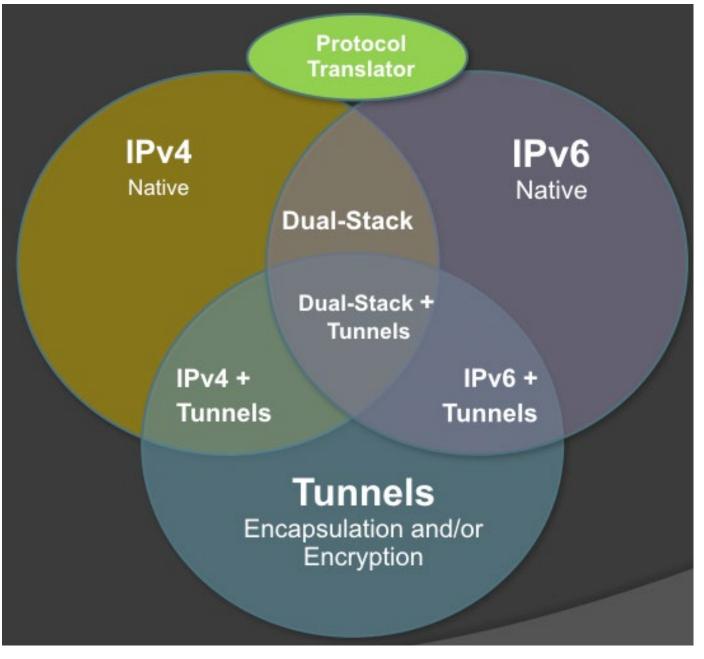
- Obtain <u>IPv6 addresses</u>
  - Home/Small Business No cost
  - Enterprise /36 yearly -\$1,000

#### **Abundance**

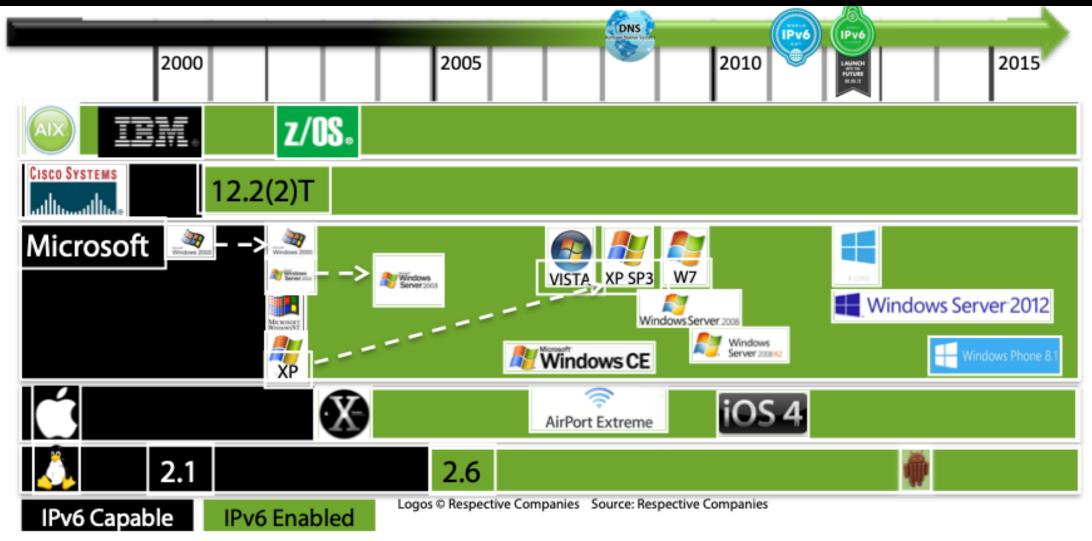
#### **IPv4 OPEX Cost Estimate**

- Obtain Internet Facing <u>IPv4</u> <u>addresses</u>
  - \$9,600 for 256 Addresses +
     \$250 Yearly
  - \$1,409,024 for 131,072
     Addresses + \$4,000 Yearly

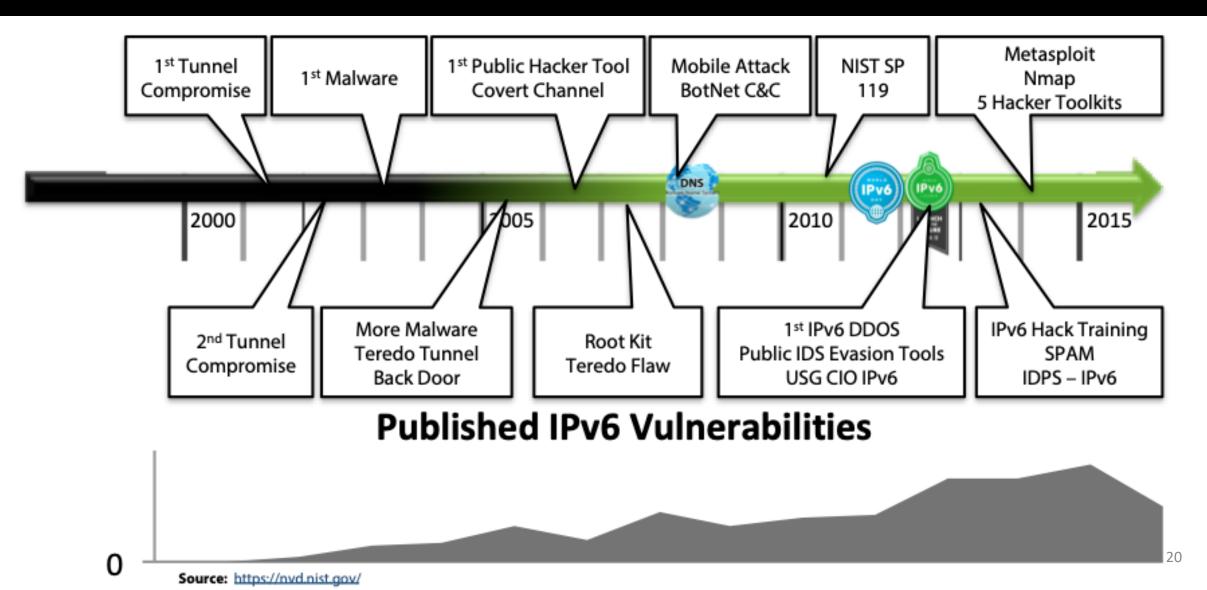
#### **Scarcity Costs**


#### **IPv4 CAPEX Cost Estimate**

- Readdressing a Data Center
  - ~\$5.2 Million per data center
- Changing Subnets /24 -/25
  - \$13,800
- DNS changes, firewall objects and policies, renumbering servers, applications testing
  - \$12,000
- Amazon Internet Facing per IPv4 address:
  - \$43.80/Year


#### **Scarcity Costs**

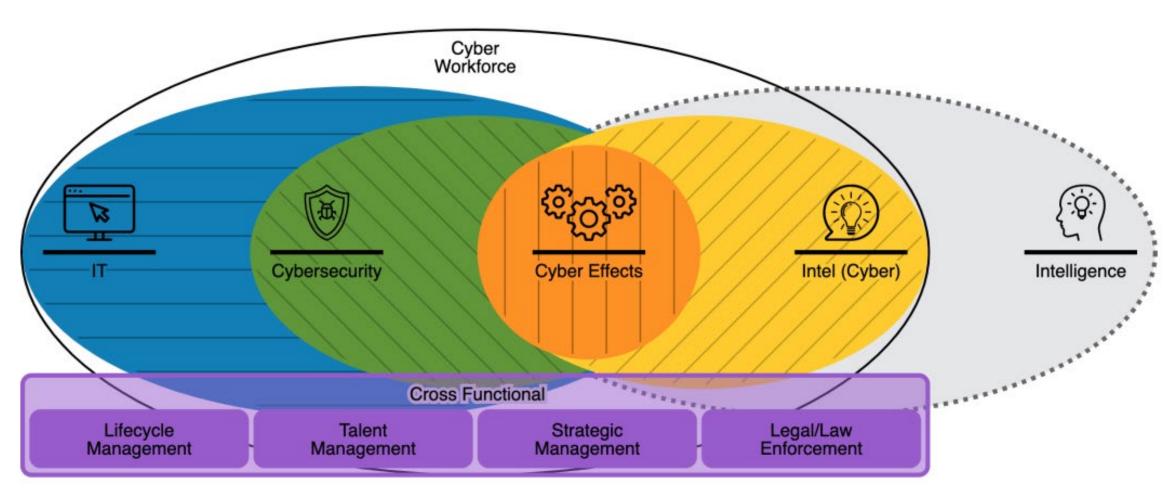
# History of IPv6 Security


### Attack Surface



#### No One is Adopting IPv6! Operating System Adoption



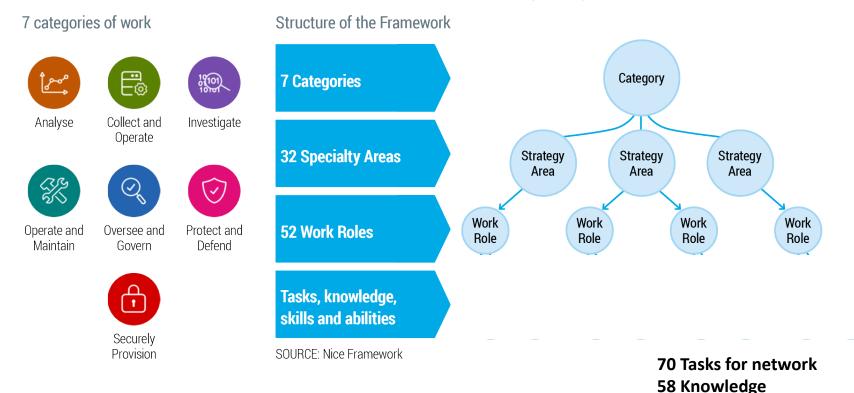

## Early IPv6 Attacks and Vulnerabilities



# IPv6 Training

How are we doing with Training, Certifications?

## Where is the IPv6 Training?

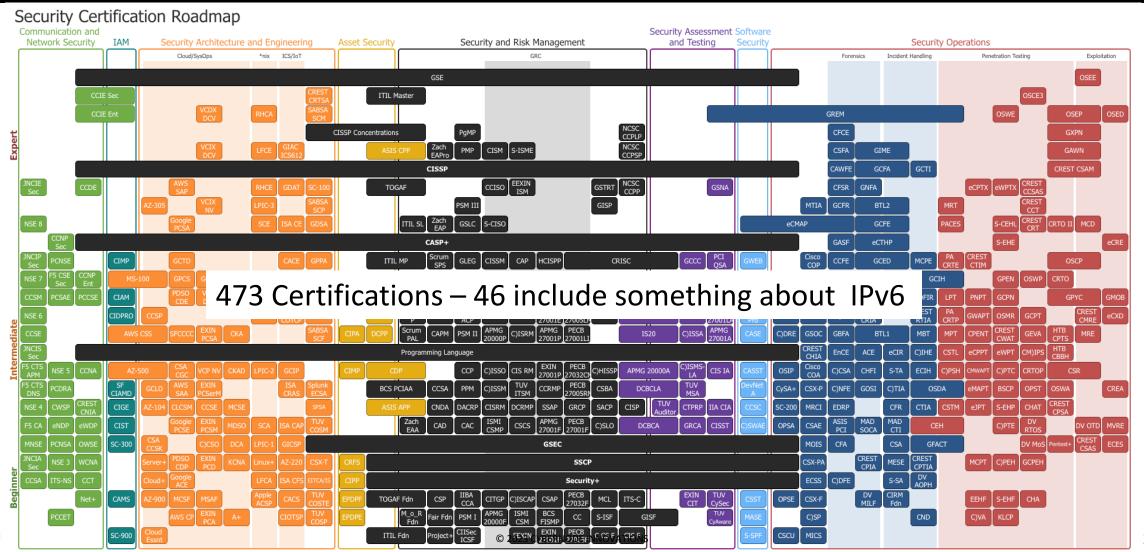





© 2023 CYBERNODE INNOVATIONS

## Where is the IPv6 Training?

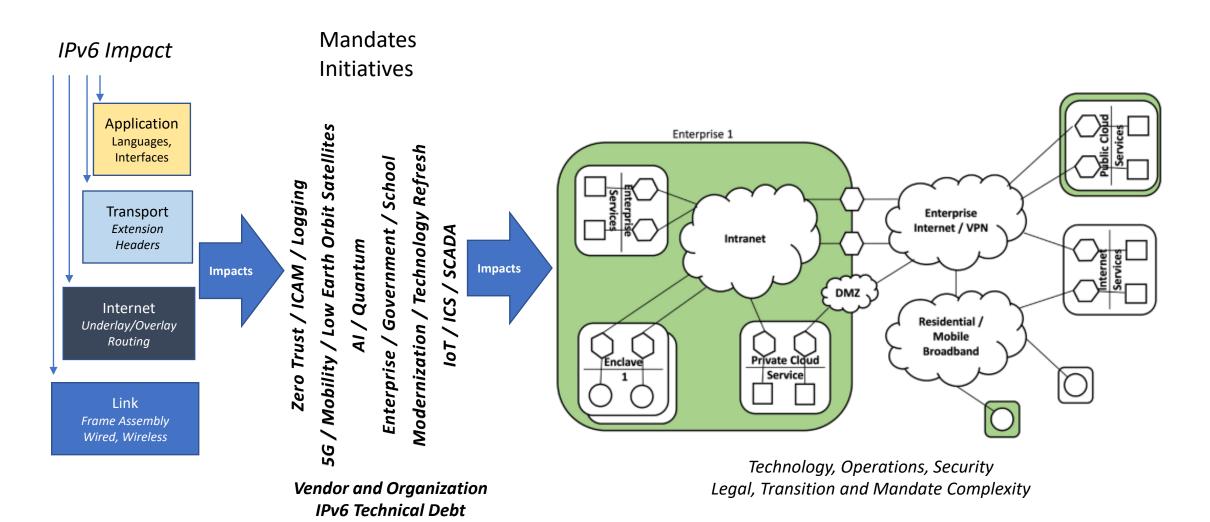
#### The National Initiative for Cybersecurity Education (NICE) Workforce Framework




URL: https://www.nist.gov/itl/applied-cybersecurity/nice © 2023 CYBERNODE INNOVATIONS

477 Skills

12 Abilities


## Where is the IPv6 Training & Certifications?



# How Does IPv6 Impact all the Mandates and Initiatives?

Did the vendor apply all security controls?

## Scope of IPv6 Transition – Architecture & TCP/IPv6 Stack





# IPv6 Cyber Pro Tip:

# Deter, Detect & Deny (Linux)

#### **IPv4 Only:**

```
# Disable Ping, No Unreachable Responses, DISABLE TCP RST
/etc/sysctl.conf: net.ipv4.icmp_echo_ignore_all = 1
Iptables -I OUTPUT -p icmp -icmp-type destination-unreachable -j DROP
Iptables -I OUTPUT -p tcp -tcp-flags ALL RST, ACK -j DROP
```

#### **IPv6 Only:**

```
# Disrupts outbound Teredo
Ipv6tables -O OUTPUT -p icmpv6-icmp -icmpv6-type echo-reply -j DROP
# Drop ICMP Echo Request, ICMP Destination Unreachable - TCP RST
ipv6tables -I OUTPUT -p ipv6-icmp --icmpv6-type destination-unreachable -j DROP
ipv6tables -I OUTPUT -p ipv6-icmp --ipv6icmp-type address-unreachable -j DROP
ipv6tables -I OUTPUT -p ipv6-icmp -icmpv6-type port-unreachable -j DROP
```

#### 80% Reduction in IPv4 & IPv6 Logs and Increases Bandwidth

## **IPv6 Security Tips**

- IPv6 is a latent threat, if you choose not to secure your network.
  - Discussion with Management and Legal
  - Build a proactive strategy, to mitigate the threat!
  - Default security, of any technology.
- Be aware IPv6 WIFI, LTE, 5G, etc. is everyplace. Ensure you have applied firewall rules and controls on Wifi, Bluetooth, NearField, USB's and other protocols.

- Gartner Group does not believe Enterprises are moving to IPv6.
  - Do your own research on Zero Trust and any other tools and cybersecurity products!
  - Reading websites, looking up USGv6/IPv6 Ready, reading blogs are not enough.
- Train staff across 7 categories, 32 specialty areas, 52 work roles.

# Bridging the Gap: IPv6 Security Through Staff Education and Technical Advancement

Joe Klein
Cybernode Innovations

Cybersecurity Fellow, IPv6 Forum
Cybersecurity Fellow, IPv6 Enhanced Council
Sr. Fellow, ISSA
IPv6Sec@gmail.com 703-594-1419