

Free and Open Source

Software (FOSS)

constitutes 70-90% of any

given piece of modern

software solutions.

--Linux Foundation, 2022

1,300 malicious packages

found in popular Node

Package Manager (npm)

JavaScript package manager

-Securityweek.com, 2022

Vulnerabilities in third

party products or services

that result in a security

breach cost an average of

$4.55M.

--IBM, 2022

92% of Open-Source

Software (OSS) contain

outdated or vulnerable

code. 650% YoY increase

in OSS attacks.

-Tech.co, 2022

Select Statistics

“Despite being discontinued

in 2005, the Boa web server

continues to be implemented

by different vendors across a

variety of IoT devices and

popular software

development kits (SDKs).”

“Thousands of smartphone

applications in Apple and

Google's online stores

contain computer code

developed by Pushwoosh,

which presents itself as

based in the United States,

but is actually Russian”

“The official software

repository for the Python

language, Python Package

Index (PyPI), has been

targeted in a complex supply

chain attack that appears to

have successfully poisoned at

least two legitimate projects”

“An unknown threat actor

has created a malicious

Python package that

appears to be a software

development kit (SDK) for a

well-known security client

from SentinelOne”

© 2022 Grant Thornton LLP | All rights reserved | U.S. member firm of Grant Thornton International Ltd 44

•

•

•

Program

Principles

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • •

•

•

•

How AppSec is done today Risk management for today’s “assembled” software

•

•

•

•

Understand which indirect, or transient,

dependencies are included in your software

builds

Transient Dependencies

Oversight through governance policies on OSS

selection. Quantify risk based on leading risk

indicators, not just known vulnerabilities.

Select Better Dependencies

Quantify the quality of dependencies in your

software and associated risks. Identify unused,

unmaintained, and outdated dependencies

Dependency Quality

Reduced number of highs and criticals. Revised

vulnerability triage, analysis, and remediation

workflows.

Incorporate continuously updated visibility into

dependencies into incident response workflows to

prevent another log4j fumble.

Prepare for the Inevitable

Visibility Control

Prioritize Vulnerabilities

Reachability

Use call graphs to understand which functions

called by your code contain vulnerabilities

Open Source Supply Chain Risks &
Safeguards

What constitutes a software supply chain
attacK?

01

According to ChatGPT…

An open source software supply chain attack is a type of cyber attack in which an

attacker infiltrates the supply chain of an open source software project and injects

malicious code into the project's codebase. This can occur at any point in the

development or distribution process. When users download and install the

compromised version of the software, the malicious code is executed on their

systems, potentially giving the attacker unauthorized access to the user's device or

network.

Open source software is widely used because it is typically free and the source code

is openly available for anyone to review, modify, and distribute. This can make it an

attractive target for attackers, as they can potentially gain access to a large number

of users by compromising a popular open source project. To protect against supply

chain attacks, it is important for open source software developers and users to

regularly update their software and be vigilant about checking for and installing

security patches.

Custom Code

3rd Party Code

Open Source

Your Application

Application

3rd Party Software

System

Y
o

u
r

su
p

p
ly

 c
h

ai
n Y

o
u

r cu
sto

m
e

r’s
su

p
p

ly ch
ain

Pramod Gosavi: Do you need “Supply Chain Security” or SBOM?

Software Supply Chain Vulnerabilities vs.
Software Supply Chain Attacks

P. Ladisa, H. Plate, M. Martinez and O. Barais, "SoK: Taxonomy of Attacks on Open-Source Software
Supply Chains," in 2023 2023 IEEE Symposium on Security and Privacy

SoK: Taxonomy of Attacks on Open-Source
Software Supply Chains

https://riskexplorer.endorlabs.com

Open Source Supply Chain
Attack Tree

The attack tree focuses on open-source based

software development practices, which involve

the consumption of numerous open-source

components throughout the entire

development lifecycle. In this context, the

attacker's top-level goal is to place malicious

code in open-source artifacts such that it is

executed in the context of downstream

projects, e.g., during its development or

runtime.

● Develop distinct malicious package from

scratch

● Create name confusion with legitimate

package

● Subvert legitimate package

DEVELOP AND ADVERTISE
DISTINCT MALICIOUS PACKAGE
FROM SCRATCH
This attack vector covers the creation of a new, seemingly legitimate and useful open-source

project with the intention to use it for spreading malicious code, either from the beginning or

at a later point in time. Besides creating the project and developing useful functionality, the

attacker is required to advertise the project in order to attract victims.

CREATE NAME CONFUSION WITH
LEGITIMATE PACKAGE

The general idea behind name confusion is that attackers craft new component names that

resemble names of legitimate open-source or system components, suggest trustworthy

authors or play with common naming patterns in different languages or ecosystems.

CREATE NAME CONFUSION WITH
LEGITIMATE PACKAGE

SUBVERT LEGITIMATE PACKAGE

This attack vector covers all attacks aiming to corrupt an existing, legitimate project, which

requires compromising one or more of its numerous stakeholders or resources, e.g. its source

code repository, build system or distribution infrastructure.

SUBVERT LEGITIMATE PACKAGE

SUBVERT LEGITIMATE PACKAGE

Recent Incident: SentinelSneak
Malicious PyPI module poses as security software development kit

Recent Incident: PyTorch
Next-gen supply chain attack in an ML package

17k forks Used in over 187K
repositories

61k GitHub stars Popular ML framework by
Meta

Recent Incident: Gorilla
Risk is not always captured as a CVE

+10k weekly clones on each
package

Used in over 90K
repositories

18k GitHub stars Most popular HTTP service
for Go

Governance starts with selection
Gorilla Web Toolkit (websocket)

● Popularity score - High
The toolkit includes 9 packages, each with over 10K unique weekly clones

● Security score - High
No known vulnerabilities in the latest release

● Quality score - Medium
This package uses best practices and is well maintained

● Activity score - Low
Despite being one of the post popular Golang projects, the toolkit has been
archived, and now poses an operational and security risk

Dependency Lifecycle Management builds
robust software, secures supply chains, and
meets emerging compliance needs

1

2

3

Diagnostic Outcomes

1 Mapping

Understand the

dependency graph for

new and existing

dependencies

2 Analysis

Answer questions about

where, how, and by

whom dependencies are

being used

3 Prioritization

Of the 1,000s

vulnerabilities in your

code, understand which

are reachable and

exploitable

5 Planning

Describe activities

required to address

discovered risks across

governance, people,

process, and tech

4 Reporting

Qualify risks and

required changes to

product teams and

executive leadership

